Ocular biometry in children and adolescent from age 4 to 17 years with intraocular lens power calculation in Sulaymaniyah city

Authors

  • Naz Othman Rashid M.B.Ch.B., KHCMS candidate Dr. Aso eye hospital, Sulaymaniyah city
  • Bakhtiar Qadir HamaSalh M.B.Ch.B./S.M.S.B.M.B. Assistant professor in Ophthalmology, University of Sulaymaniyah
  • Diare Tahir Ali Mirza M.B.Ch.B./F.I.B.M.S.H.D.O. senior ophthalmologist, Dr. Aso eye hospital, Sulaymaniyah city

DOI:

https://doi.org/10.56056/amj.2025.330

Keywords:

Adolescent, Biometry, Child, Intraocular

Abstract

Background and objectives: Ocular biometry is an essential method to measures the anatomical dimensions of the eye in adult and children. The objective is to detect the ocular biometric changes and intraocular lens power calculation in children and teenagers (4 to 17) years.

Methods: This hospital-based observational study included 208 participants (109 females and 99 males) distributed across three age groups (4 to 8, 9 to 12, 13 to 17) years, visiting Shahid Dr. Aso Teaching Eye Hospital in Sulaymaniyah governorate from November 2022 to July 2023. Information on axial length, anterior chamber depth, mean keratometry value, central corneal thickness, and intraocular lens power was collected and evaluated by the IOL Master 700 and Haigis formula.

Results: The average age was 10.52 with a standard deviation of ± 3.31. In the three age groups, AL changed from 22.83 mm to 23.28 mm. Mean keratometry values ranged from 43.46 D to 43.20 D, and IOL power varied from 22.27 D to 21.33 D. Despite gender differences, only AL and IOL power changes were statistically significant (p values: 0.025 for AL, 0.00 for IOL).

Conclusion: The optical ocular elements consistently align with changes in axial length, showing an increase as the child ages. This is accompanied by a decline in mean keratometry values, particularly between the ages of 4 to 8 years and a decrease in intraocular lens power. As the child matures, the variations in these parameters diminish.

Downloads

Download data is not yet available.

References

Chakraborty R, Read SA, Vincent SJ. Understanding myopia: Pathogenesis and mechanisms. In Ang M, Wong TY, editors, Updates on Myopia: A Clinical Perspective. Singapore: Springer. 2019. 65-94 doi: 10.1007/978-981-13-8491-2_4/

Howes FW, Patient Workup for Cataract Surgery, Myron Yanoff, Jay Duker. Chapter 5.4, Ophthalmology, 5th ed. Philadelphia; 2019. 334-9.

Mutti DO, Mitchell LG, Jones LA, Friedman NE, Frane SL, Lin WK; Axial Growth and Changes in Lenticular and Corneal Power during Emmetropization in Infants. Invest. Ophthalmol. Vis. Sci. 2005;46(9):3074-80. https://doi.org/10.1167/iovs.04-1040/

Eibschitz-Tsimhoni M, Tsimhoni O, Archer SM, Del Monte MA. Effect of axial length and keratometry measurement error on intraocular lens implant power prediction formulas in pediatric patients. J AAPOS. 2008;12(2):173-6. doi: 10.1016/j.jaapos.2007.10.012/

Fontes BM, Fontes BM, Castro E. Intraocular lens power calculation by measuring axial length with partial optical coherence and ultrasonic biometry. Arq Bras Oftalmol. 2011;74(3):166-170. doi:10.1590/s0004-27492011000300004/

Vogel A, Dick HB, Krummenauer F. Reproducibility of optical biometry using partial coherence interferometry: intraobserver and interobserver reliability. J Cataract Refract Surg. 2001;27(12):1961-1968. doi:10.1016/s0886-3350(01): 01214-7/

Trivedi HR, Zala BC, Pancholi NSA comparison of axial length measurement by using applanation A- Scan and IOL master for accuracy of predicting postoperative refraction. Indian J Clin Exp Ophthalmol. 2021;7(3): 47781.10.18231/j.ijceo.2021.095/

Lin AA, Buckley EG. Update on pediatric cataract surgery and intraocular lens implantation. Curr Opin Ophthalmol. 2010;21(1):55-9. doi:10.1097/ICU.0b013e32833383cb/

McClatchey SK, Hofmeister EM. The optics of aphakic and pseudophakic eyes in childhood. Surv Ophthalmol. 2010;55(2):174-82. doi: 10.1016/j.survophthal.2009.07.001/

Enyedi LB, Peterseim MW, Freedman SF, Buckley EG. Refractive changes after pediatric intraocular lens implantation. Am J Ophthalmol. 1998;126(6):772-81. doi:10.1016/s0002-9394(98)00247-5/

Bullimore MA, Slade S, Yoo P, Otani T. An Evaluation of the IOLMaster 700. Eye Contact Lens. 2019;45(2):117-23. doi:10.1097/ICL.0000000000000552/

Haigis W, Lege B, Miller N, Schneider B. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol. 2000;238(9):765-73. doi:10.1007/s004170000188/

Rauscher FG, Francke M, Hiemisch A, Kiess W, Michael R. Ocular biometry in children and adolescents from 4 to 17 years: a cross-sectional study in central Germany. Ophthalmic Physiol Opt. 2021;41(3):496-511. doi:10.1111/opo.12814/

Liu W, Liu W, Wang C. Ocular biometric parameters of mild hyperopia to mild myopia children aged 6-14 years from Wenzhou optometry center: A cross-sectional study. Front Med (Lausanne). 2022; 9:992587. doi:10.3389/fmed.2022.992587/

Hashemi H, Jafarzadehpur E, Ghaderi S. Ocular components during the ages of ocular development. Acta Ophthalmol. 2015;93(1): e74-e81. doi:10.1111/aos.12498/

BenEzra D. Cataract surgery and intraocular lens implantation in children, and intraocular lens implantation in children. Am J Ophthalmol. 1996;121(2):224-6. doi:10.1016/s0002-9394(14)70595-1/

Downloads

Published

2025-03-03

How to Cite

Rashid, N. O. ., HamaSalh, B. Q. ., & Mirza, D. T. A. . (2025). Ocular biometry in children and adolescent from age 4 to 17 years with intraocular lens power calculation in Sulaymaniyah city . AMJ (Advanced Medical Journal), 10(1), 157–163. https://doi.org/10.56056/amj.2025.330

Issue

Section

Articles